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The foundation of an abstract algebra for the description of crystal structures is developed in terms 
of ideally closest-packed structures. All the spatial information of closest-packed structures can be 
derived in terms of (a) the geometry of the atoms (A positions) and the plane, triangular interstices 
(B and C positions) of a closest-packed p6mm monolayer, and (b) the permutations induced among 
these A, B, and C positions by translations from one monolayer midplane to another. The mathe- 
matical device used to correlate this information is a translation-permutation vector operator. 
Since this operator is closely related to the basic concept of a layer-by=layer crystal growth process, 
the algebra is readily extensible to crystal structures that are defective owing to many kinds of 
non-periodic elements of structure. Some examples are presented of the application of the algebra 
to closest-packed structures that  are either ideal or exhibit one of two kinds of defect: classical 
stacking faults or point defects. 

1. Introduction 

An algebra for the description of crystal structures 
is herein presented which has its axiomatic  foundat ion 
based upon a concept tha t  is central to the general 
ideas concerning crystal  growth: namely  tha t  crystals 
grow by  the successive laying down of new layers 
of atoms upon the under lying substrate.  The present 
paper, which is the first of a planned series of papers, 
lays the foundat ion of the algebra and is restricted 
to the case of ideal closest packing. In  later papers 
i t  is p lanned to extend the algebra to cover both 
increasingly greater deviat ions from ideal closest 
packing and non-periodic elements of structure such 
as dislocations. 

One aim of the algebra is to meet  an increasingly 
greater need, in the field of crystal  physics calcula- 
tions, for the description of highly defective solids in 
a na tura l  ma themat ica l  fashion. Another  a im is to 
serve a heuristic purpose by  exposing the logical 
foundations of complicated crystal  structures so tha t  
interrelat ionships between structures can be discovered 
and useful modificat ions of known structures sug- 
gested. 

Although the outward form of the present algebra 
is quite dist inct  from the modular  crystal  algebra of 
Loeb (1958, 1962) and Morris & Loeb (1960), the two 
algebras can be shown to be mathemat ica l ly  iso- 
morphic. However, the present algebra has certain 
advantages  in the ease of t r ea tment  of non-ideal and 
defective crystals, par t icular ly  those with non- 
periodic elements of structure. 

2. The closest-packed monolayer  and the fun- 
damental  generating operation of closest packing 

Infinite,  three-dimensional  arrays of closest-packed 
spheres can be described in terms of the closest-packed 

monolayer and a generating operation by  means  of 
which the monolayers  are combined. A closest-packed 
monolayer  is a p lanar  array of rigid spheres of equal 
size tha t  are packed together as densely as possible 
with each sphere tangent ia l ly  contacting six other 
spheres and with the centers of the rigid spheres 
defining the two-dimensional space group p6mm. 
The fundamenta l  generat ing operation of closest 
packing is the physical  operation of placing one 
closest-packed monolayer  in contact with another  
monolayer  in as close a fashion as possible, i.e. so 
tha t  the atoms of each monolayer  lie in the t r iangular  
hollows of the adjacent  monolayer  and tangent ia l ly  
contact three of its atoms (cf. Pat terson & Kasper,  
1959). 

3. The coordinate sys tems  

I t  is convenient to use s imultaneously both a hexagonal  
coordinate system (al, a2, c) and a cartesian coordinate 
system (x, y, z) wi th  a common origin at  the center 
of a closest-packed atom, coincident a2 and y axes, 
and coincident c and z axes (Fig. 1). The uni t  of 
distance along the al, a2, x, y, and z axes is taken as 
2rcp, where top is the radius of the closest-packed 
spheres. However, it  is useful to use a different uni t  
of distance along the c axis, namely  to= V~'r~,= 
1.6330rcp which is the m i n i m u m  separat ion distance 
between the midplanes  of ideally closest-packed 
monolayers;  thus z and c coordinate readings are 
related by the equat ion z= ~-~.c. 

4. Definition of the A, B, and C posit ions 

Three types of position within the closest-packed 
monolayer,  the A, B, and  C positions (Fig. 1), are 
used as the basis for the notat ional  system of the 
algebra developed in the present paper. The center 
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Fig. 1. Il lustration of: (a) the distribution of the A, B, C 
positions of the closest packed reference monolayer with 
c----z----0 (denoted by the 0-subscripts); (b) the correlation 
of the x, y and a 1, a 2 axes; and (c) the intersection of the 
TPO unit  cell with the midplane of the reference monolayer 
(heavy curved line). 

of each closest-packed sphere is defined as an A 
position. If the curved triangular interstices are 
considered as two-dimensional arrowheads, the centers 
of those plane triangular interstices which point in 
the positive x direction are defined as B positions, 
and the centers of those plane triangular interstices 
which point in the negative x direction are defined 
as C positions. 

5. Abstract algebra of the TPO; reduction to a 
simplif ied notation; unit TPO; s y m m e t r y  opera- 

tions of the TPO 

Infinite, three-dimensional arrays of closest-packed 
spheres are built up by successive applications of the 
fundamental  generating operation described in § 2. 
Each time the generating operation is applied a 
translation is effected from one monolayer midplane 
to the next and a definite permutative relationship 
exists between the A, B, C positions of the newest 
monolayer added to the stack and the A, B, C positions 
of all the previous monolayers in the stack. By 
keeping track of the permutatlve relationships be- 
tween the A, B, C positions of the separate monolayers 
the present algebra leads to a simple description of 
all the spatial properties of ideal closest packing. 

The correlations of the A, B, C, positions of different 
monolayers are stated in terms of translation-permuta- 
tion vector operators denoted by the symbol: 

TPO = {P I To},* (1) 

* This notat ion has been adapted from a ro ta t ion-  
translation operator notat ion first suggested by Seitz (1934, 
1935, 1936) and recently used by Koster  (1957). 

where Tc is a mathematical translation operator 
acting in the c direction, P is a permutat ion operator 
representing the permutation induced by the overall 
translation operation, and TPO is an abbreviation 
for the full name ' translation-permutation operator'. 
These operators are of three types" 

{I [(n-m)tc}(A, B, C)m=(A, B, C) , ,  (2) 

{Rl(n-m)t~}(A, B, C)m= (B, C, A)n,  (3) 

{L [ (n-m)t~}(A, B, C)m=(C, A, B), (4) 

where tc is the magnitude of the unit translation 
vector parallel to the c axis, n and m are integral 
values of the c coordinate, and I,  R, L are the three 
possible choices of P. Multiplication of TP-operators 
is carried out by vector addition of the T~ operators 
and by permutation multiplication of the P operators: 

{P l (n-m)tc}{P' [ (p-n)tc}= {PP' [ (p-m)tc}. (5) 

Equation (5) holds regardless of the algebraic mag- 
nitude of the c coordinates m, n, p, but, without any 
loss of generality, it will be assumed tha t  the TPO 
all act in the positive z direction and that  m _< n _< p, 
with the exceptions of inverse and horizontally re- 
flected TP-operators where m >_ n > p. Hence, unless 
otherwise specified, left-to-right in the TPO formulae 
corresponds to the positive c direction in the crystal 
structures. 

I t  is convenient to indicate the magnitude of the 
translation by the use of subscripts and thus redefine 
(2), (3), (4) as (6), (7), (8) respectively; thus: 

I,~r~ = (AmAn, Br~Br~, C~Cn) = ((A)(B)(C))mr~, (6) 

Rmn = (AmBn, B,nCn, CmAn) = (ABC)~n, (7) 

Lm~ = (A,nC~, CmBn, B,~A~)= (ACB)mn, (8) 

where the letter couples, XmXn, are entities, directed 
parallel to the c axis, called permutation subvectors 
which connect the positions Xm (X=A, B, or C) of 
the monolayer midplane with c coordinate c = m with 
the positions Xn of the monolayer midplane at  c = n. 
The permutation subvectors differ from true vectors 
in that  subvector addition, 

X m X n  -~ X n X p  = X m X p  , (9) 

is not commutative in general since the starting 
position X= of the subvector XnXv must be identical 
with the terminating position Xn of the subvector 
XmX~. The combinations of three subvectors in the 
middle terms of equations (6), (7), (8) further differ 
from true vectors in tha t  their subvectors do not 
emanate from a common origin as do ordinary vector 
components but instead are all parallel to the z axis; 
hence these subvector-combinations are called permu- 
tation pseudovectors. 

Unit TPO are defined by setting n = m + l  in 
equations (6), (7), (8). However, of the nine subvectors 
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in those equations, the three in equation (6) are 
forbidden for the case n = m +  1 by the definition of 
closest packing in § 2; i.e. the identity operator I~n 
is defined for n = m  and for n >_ m + 2  but not for 
n = m + 1. In the case of the unit TPO it is convenient 
to eliminate the subscripts except where they are 
necessary as in the case of inverse and horizontally 
reflected unit TPO. This permits a final simplification 
of the formulae for the two possible types of unit 
TPO to: 

R = (AB, BC, CA) = (ABe) ,  (10) 

L = (AC, CB, B A ) =  (ACB).  (11) 

The algebra of the TP-operators is a mathematical 
group with many (but not all) of the properties of 
a one-dimensional vector group of infinite order under 
vector addition. The group multiplication table is 
shown in Table 1. 

Table 1. TPO group multiplication table 

Inp  Rnp  i n p  

Iron Imp Rmp i m p  
Rmn Rmp Lmp Imp 
Lmn Lmp Imp Rmp 

A complication arises with rcspect to the uniqueness 
of the group elements for n ___ m +  6 due to the onset 
of isomerism (see § 6). To insure the well-behaved 
nature of the TPO group it is necessary that  a group 
element Ym,m+~ ( Y = I ,  R, or L; k = a  positive integer) 
be considered as a sum of k unit TPO and not as a 
single TPO of magnitude k4. However, for some usages, 
e.g. stating the correlations between widely separated 
planes without regard to the intervening structure, 
it is convenient to set rigor on the side and consider 
the TPO vector to have the magnitude ktc. 

A second restriction must be placed on the TPO 
formulae for the purpose of defining crystallographic 
unit cells. In order to limit the TPO group to a single 
structure in a given discussion it is necessary to 
specify both the sequence of unit TPO and the 
number, N, of unit TPO in the crystallographic repeat 
unit of the given structure. The result is a periodic 
group of infinite order with a period 2V. 

I t  is important to note the difference in the physical 
effect of taking the inverse of a TPO and the effect 
of two other symmetry operations, namely rotation 
of the TPO by 60 ° about the c axis, ~ (60°), and 
horizontal reflection of the TPO in the xy plane, ah. 
The physical effect of these three symmetry operations 
is compared and summarized in Table 2 for both 
a general and a unit TPO, where an R TPO has been 
arbitrarily chosen as the operand. 

Table 2. Symmetry operations of the TPO 

(Rmn) -1 = Lnm (R01)-I = L10 

~'(60°)Rmn = Lmn ~(60°)Rot = L01 

(IhRmn = R _ m , _  n GhRol = 1~o_ 1 

6. Atom lattices 

Closest-packed atom lattices are simply represented 
by TPO formulae which consist of sequences of unit 
TPO. Since these unit TPO can have one of only 
two possible values, R or L, the resulting formulae 
are directly related to the classification scheme 
developed by Zhdanov (1945) and later extended by 
Patterson & Kasper (1959).* 

A sequence of/c unit TPO (k an integer) represents 
a crystallographic unit cell if the group product of 
the given sequence of R and L unit TPO is an identity 
element of either the form Im,m+k or Im,m+3e (i.e. 
either /V=k or 2/=3k).  The former form holds if 
(nR--nL)----0 (modulo 3) and the latter form holds if 
(nn--nL)~O (modulo 3), where nR and nL are the 
numbers of R and L unit TPO respectively in the 
overall TPO formula and nR+nL=k. 

As representative examples the cases 1 < k < 6 are 
listed in Table 3 where for simplicity m has been set 
equal to zero./ol is of course forbidden by the defini- 
tion of closest packing in § 2. I02, I08, I04 and I05 
represent unique structures, but the case /c=6 ex- 
hibits a structural isomerism, /06(1)  and 106(2), a 

phenomenon which will be quite preva]ent for k >__ 6. 
Use was purposely made of the letters A, B, C in 

the present notation since it contains and, in fact, 
defines the classic three-letter layer notation using 
the same letters. However, to insure clarity in the 

Table 3. Closest-packed unit cells, Im,m+1~ (1 _< k _< 6) 

I0t is forb idden  b y  the  defini t ion of closest  packing  

Io2 = R L  = ( A B C ) ( A C B )  = h.c.p. 
--- (AoB1A2, BoCtB~, CoAtC2) 

I03 = R R R  = ( A B C ) ( A B C ) ( A B C )  = c.c.p. 
= (AoB1C2Az, BoC1A~Ba, CoA1B2C 3) 

104 = R R L L  = ( A B C ) ( A B C ) ( A C B ) ( A C B )  
= double-hexagonM c.p. 

= (AoB1CgB3A4, BoC1A2CaB4, CoA1B2A.~C4) 

105 = R R R R L  = ( A B C ) ( A B C ) ( A B C ) ( A B C ) ( A C B )  
= (AoB1C2AaB4As, BoC1A~B3C4B 5, 

CoA1B~CaA4Cs) 

106(1 ) = R R R L L L =  ( A B C ) ( A B C ) ( A B C ) ( A C B ) ( A C B ) ( A C B )  
= (AoB1CeAaC4BsA~, BoC1AeBaAaCsB 6, 

CoAtBeCaB4AsC6) 

166(2 ) = R R L L R L  = ( A B C ) ( A B C ) ( A  C B ) ( A C B ) ( A B C ) ( A  CB) 
= (AoB1C2BaA4B.~A6, BoCIA2CaB4CsB 6, 

CoA1BeAaC4A~C6) 

* I t  should  be no t ed  t h a t  the  + ,  -- symbo l s  of P a t t e r s o n  
& K a s p e r  have  ~ one- to-one rela t ionship respec t ive ly  to the  
presen t  L, R symbol s  for c loses t -packed double  layers,  b u t  
t h a t  Z h d a n o v ' s  c, h symbo l s  refer to a tr iple layer,  i.e. his 
c = R R = L L  and  his h = R L = L R .  Thus  if one applies the  
physica l  meaning  of Z h d a n o v ' s  c, h symbol s  in t e rms  of R 
and  L uni t  T P O  to his sequent ia l  formulae,  the  correlat ion 
of his formal  formulae  wi th  physica l  s t ruc tu res  is de s t royed ;  
e.g. 3113 in the  c, h no t a t i on  implies space group T6m2 b u t  
ac tua l ly  corresponds  to the  real s t ruc tu re  4211 of space group 
R3m.  Howeve r ,  Z h d a n o v ' s  tab les  are correct  since t hey  only 
make  use of the  twofold  aspec t  of his defini t ions and  no t  thei r  
physical  meaning  (Gehman,  1963a). 
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mathematical formulae, the c coordinate of monolayer 
positions will be indicated by subscripts, e.g. An, 
B~, C~, for a layer at c=n, but the c coordinate of 
the layer will be indicated in parentheses, e.g. B(n) 
for a B layer at c=n. The reference monolayer is 
arbitrarily defined as an A layer, A(0), in both nota- 
tions. Then, an A(m) layer is one which has its atom 
centers or Am positions directly above the A0 positions 
(in the sense of a projection parallel to the c axis); 
thus A ( m ) -  Io,n. A B(n) layer has its A~ positions 
over B0 positions ; thus, using equation (8), B(n) - Lon. 
Similarly, a C(p) layer is defined as C(p)=-Ro2,. In 
these definitions m=~l, i.e. A A  subvectors are for- 
bidden, and, in a given structure, m ~e n ~= p. 

7. I n t e r s t i c e  la t t i ces  

Interstice lattices are defined by the closest-packed 
atom lattices. For many crystal physics considerations, 
e.g. the ordering of the cations in spinel (Verwey & 
Heilmann, 1947 ; Verwey, Haayman & Romeijn, 1947), 
it is convenient for a first approximation to separate 
the physics of the interstice lattices completely from 
the physics of the closest-packed atom lattice, and 
to allow the interactions between the two lattices to 
enter only at a higher stage of approximation. 

In two dimensions there is one lattice of the B 
positions and one of the C positions. Spatially, these 
two interstice lattices are exactly equivalent to the 
defining atom lattice but are respectively displaced 
from it by translations of _+ I/~.rcp parallel to the 
x axis (Gehman, 1961). 

In three dimensions, lattices of the familiar octa- 
hedral and tetrahedral interstices (abbreviated as oct. 
and tet. respectively) arise. The octahedral interstices 
are represented in the TPO algebra by unit interstice- 
interstice permutation subvectors of the form BC 
and CB, and the tetrahedral interstices by unit 
atom-interstice subvectors of the form AB,  AC, BA,  
and CA. The tetrahedral interstices can be further 
subdivided into two subclasses according as the atom 
(A position) lies below or above the plane triangular 
interstice (B or C position); thus A B  and AC represent 
negative tetrahedral interstices, ( - ) - te t . ,  and BA and 
CA represent positive tetrahedral interstices, ( + )-tet.* 

The c coordinate of the plane of the centers of the 
three types of three-dimensional interstices, between 
the two midplanes at c=n  and c = n + l ,  is (n+ 1) 
for (+)-tet. ,  (n + ½) for oct., and (n + ~) for ( - )-tet. 

The identification of the three.dimensional inter- 
stices with the unit permutation subvectors permits 
a simple verification of the following stoichiometric 
ratio rules" 

ncp : n te t  : n o c t :  1:2 : 1 , (12) 

ncp = n(+)-tet = n(-)-tet -- noct , (13) 

* ~V. B. The B and C position are distinguished by direction 
along the x axis whereas the (--)-tet. and (+)-tet. interstices 
are distinguished by direction along the z axis. 

where ncp, hoot, n(+)-tet, and n(-)-tet stand for the num- 
bers of closest-packed atoms, octahedral interstices, 
positive tetrahedral interstices, and negative tetra- 
hedral interstices respectively, and where n t e t  = n(+)-tet 
-~n ( - ) - t e t .  The rules follow by inspection of either of 
the unit TPO definitions, equations (10) and (l 1), 
in which it should be noted that  the A positions 
represent crystallographic half-atoms. 

An obvious extension of the present notation permits 
a classification of the interstice layers as A, B, C 
layers, as can be seen by subdividing a refit TPO 
into fractio~ml TPO as follows: 

Loi = Lo,~LL½L½,~L~,i , (14) 

or Rol = R0, ¼R L i. R½, ~R~,i. (15) 

I t  also follows from (14) and (15) that  the (+)-tet .  
and ( - ) - t e t .  space lattices are individually identical 
with the closest-packed atom lattice but are displaced 
from it along the c axis by T-~tc respectively. How- 
ever, the octahedral interstice lattice is the same 
as the closest-packed atom lattice only for the single 
case of c.c.p. All other closest-packed lattices have 
at least one R L  or LR pair of adjacent unit TPO in 
their TPO formulae which implies an adjacent pair 
of octahedral interstices parallel to the c axis (see I02 
in Table 3), and this configuration cannot be matched 
by closest-packed atoms. 

8. I n f o r m a t i o n  c o n t e n t  of the  T P O ;  
geometr ical  display form 

An important feature of the TPO crystal algebra is 
that, as the algebraic TPO formula for a given struc- 
ture is being generated by writing down a sequence 
of R and L unit TPO, all of the crystallographic 
information of the structure is simultaneously gener- 
ated and stored in the final TPO formula. As examples, 
consider the cases of h.c.p., c.c.p., and double hex- 
agonal closest packing. From Table 3 it follows that  
the number of crystallographic layers in the repeat 
units are 2, 3, and 4 respectively for these structures 
since their permutation subvectors contain 3, 4 and 5 
letter symbols respectively. Table 3 also contains 
the well known information that  the atoms are con- 
tained in single equivalent sets in h.c.p, and c.c.p., 
but are contained in two distinct sets in the double 
hexagonal case. This can be readily seen by considering 
the stoichiometric ratios, nep:ntet:noct, of the in- 
dividual subvectors which differ in the three struc- 
tures. All the atoms (A positions) lie on three equiv- 
alent subvectors in c.c.p., and in h.c.p, the atoms 
lie on only two subvectors (those starting at A0 and Co) 
that  are equivalent to each other but which differ 
from the third subvector which contains octahedral 
interstices exclusively. But in the double hexagonal 
case the atoms lie in two separate sets: one set in the 
subvector starting at Co which contains only atoms 
and tetrahedral interstices, and the other set in the 
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two remaining subvectors which also contain octa- 
hedral interstices. 

The information content of the TPO formulation 
can be made even more graphic by converting the 
linear display forms of Table 3 to geometrical display 
forms such as those illustrated in Fig. 2. The trigonal 
columns are constructed by arranging the three 
permutat ion subvectors, of the overall permutation 
pseudovector of the given structure, in a parallel 
fashion, their c=O positions being located at the 
apices of the triangle of A0, B0, Co positions illustrated 
in heavy outline in Fig. 1. 

A6 / 

B a .  . . 

A7 B 7 . A7 

_ . q A 6 . . . .  q 

- - G 84 • . . 

C 5 . . . .  B~ 

/ 

J ,\ 

J 

/ 

~_~A4 C4 

8a Aa 

Ca 

C2 B2 

81 -Ai \ d /  
---Ao & Co 

8o 

h.c.p. = R/... c.c.p.= RRR .. Double hexagonal 
- RRLL . . .  

Fig. 2. Geometrical display forms of the TPO for h.c.p., c.c.p., 
and double hexagonal closest packing. Double headed 
arrows indicate the crystallographic repeat  unit,  and the 
A A  skew vectors connect adjacent  A positions (travelling 
upward).  

In Fig. 2 a single crystallographic repeat unit of 
double hexagonal closest packing is illustrated but  
7/2 and 7/3 of repeat units are illustrated in the case 
of h.c.p, and c.c.p, respectively in order to show the 
coincidence of certain double layers in the three 
structures. For example, all three structures have 
identical pairs of monolayers and interleaved planes 
of octahedral and tetrahedral interstices for c coor- 
dinates of c=O, 1; h.c.p, and c.c.p, next have identical 
double layers at  c=6 ,  7; h.c.p, and double hexagonal 
next have identical double layers at  c=3, 4; and 
c.c.p, and double hexagonal would next have identical 
double layers at c= 12, 13. 

I t  is interesting to consider the connectivity of the 

atoms (A positions) along the TPO vector. This can 
most easily be done in terms of entities tha t  are called 
AA skew vectors since they are necessarily skewed 
with respect to the c axis. In Fig. 2 a difference in 
the atom types in h.c.p, and c.c.p, can be established 
by noting tha t  each atom connects two AM skew 
vectors that  always lie in the same face of the trigonal 
column in h.c.p., but  which always lie in adjacent 
faces in c.c.p. This difference also demonstrates the 
existence of two sets of equivalent atoms in double 
hexagonal closest packing since half of the atoms are 
of the h.c.p, type and the other half of the c.c.p, type. 

The AA skew vectors illustrate an interesting 
anti-pari ty property since they  spiral around the 
RRR=c.c.p. column in Fig. 2 like a left-handed 
screw (LLL leads to a right-handed spiral). Alge- 
braically, this anti-pari ty is illustrated by the Io8= 
c.c.p, case in Table 3 where a sequence of R= (ABC) 
unit TPO leads to an ACBA sequence of layers which 
is left-handed from a permutation viewpoint. I t  
should be emphasized tha t  this anti-pari ty property 
is a fundamental  characteristic of closest packing 
and not a peculiarity of the TPO algebra tha t  might 
be removed by a different formulation. 

The A A skew vectors can be extended linearly to 
infinity only in the single case of c.c.p, where they 
define the (110} directions. This can be seen from 
Fig. 1 where it should be noted tha t  the three ex- 
tended skew vectors, . . .  MoA1A2..., that  pass through 
the origin have their c = 1 and c--2 positions directly 
above the Co and B0 positions respectively. This is 
the TPO statement of the existence of a center-of- 
symmetry in c.c.p. 

Fig. 2. also shows that  both h.e.p, and double 
hexagonal closest packing possess mirror planes of 
symmetry:  for all integral values of the c coordinate, 
n, in the h.c.p, case, but  only for even values of n 
in the RRLL double hexagonal case. Finally, in h.c.p., 
the subvector starting at  B0 in Fig. 2 clearly shows 
that  the planar p6mm lattice of the octahedral 
interstices can form a simple hexagonal lattice when 
extended to three-dimensions. 

9. S t a n d a r d  ionic c rys ta l  s t r u c t u r e s  

The standard ionic crystal structures are defined as 
those structures which have either a cubic or hex- 
agonal closest-packed structure of large atoms 
(usually anions) and which have the individual planes 
of octahedral and tetrahedral interstices either com- 
pletely filled by small atoms (usually cations) or 
completely empty  (Gehman, 1963b). This gives rise 
to the ten structures listed in Table 4, where the 
three digital entries in parentheses after each unit 
TPO represent the complete occupancy or non- 
occupancy, 1 or 0 respectively, of the (+)- te t . ,  oct., 
and ( - ) - t e t .  interstice-layers respectively. In the 
CdX2 and ZnS TPO formulae, changing the or to and 
mixes the two possibilities together and leads to the 
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concept of interstice lattice stacking faults which is 
the subject of part  I I  of this series. 

In  writing a FORTRAN computer program for 
the calculation of a given solid state property of the 
s tandard crystal structures, the meaning of the R 
and L unit TPO would be defined in terms of the 
coordinate translations (as listed by Patterson & 
Kasper, 1959, Table 7.1.5A) and any other parameters 
of interest would also be defined. Then the high-speed 
computer would be instructed to generate the standard 
crystal structure of interest by entering-in the ap- 
propriate instruction from Table 4. 

Table 4. TPO representation of the standard crystal 
structures for a high-speed electronic computer program 

c.c.p.: 
Li3Bi = L( l l l )L( l l I )L( l l l )  
NaCI = L(OIO)L(OIO)L(OIO) 
CdC1 z ---- L(OIO)L(OOO)L(OIO)L(OOO)L(OIO)L(O00) or 

L(000)L(010)L(000)L(010)L(000)L(010) 
Li20 = L(IO1)L(IO1)L(IO1) 
ZnS ---- L(IOO)L(IOO)L(IO0) or L(OO1)L(OOI)L(O01) 

h.c.p. : 
hex-LiaBi = L(ll l)R(ll l)  

NiAs = L(010)R(010) 
CdI 2 = L(010)R(000) or L(000)R(010) 

hex-Li20 = L(101)R(101) 
ZnS = L(100)R(100) or L(001)R(001) 

10. T P O  conta in ing a mul t ip l i c i ty  of permutation 
pseudovec to rs ;  T P O  unit cells 

In Table 4, a single permutation pseudoveetor per 
TPO is sufficient since the layers of interstices are 
either completely empty or completely full in the 
standard ionic crystal structures. However, in the 
case of many important  crystal structures the inter- 
stice layers are only partially occupied, e.g. a-A1208 
has its layers of octahedral interstices only two- 
thirds occupied by A1 ions. Partial  occupancy by a 
given type of atom can even occur in the closest- 
packed atom monolayers, e.g. the perovskite structure 
of KMgF3 has its closest-packed monolayers made 
up of K and F ions in a 1:3 proportion (Wells, 1962). 
The TPO formulae for such structures necessarily 
contain more than one permutation pseudovector. 
For example, in spinel, four pseudovectors, I, II, 
III ,  IV, are required in the TPO formula, as shown 
in formula (16): 

i. R(OO1)R(OOO)R(IOO)R(OIO)R(OIO)R(OIO) 

II.  R(IOO)R(OIO)R(OIO)R(OIO)R(OO1)R(O00) 

III .  R(OIO)R(OIO)R(OO1)R(OOO)R(IOO)R(OIO) 

IV. R(OOO)R(OIO)R(OOO)R(OIO)R(OOO)R(OIO). (16) 

The A positions of the reference monolayer are 

clustered in the arrangement indicated by the roman 
numerals I through IV in Fig. 1 which requires tha t  
the hexagonal unit cell in Fig. 1 must have its edges 
doubled in the al and a2 directions. In general, the 
multiplicity, or the number of permutation pseudo- 
vectors required in the TPO formula, is equal to the 
highest common denominator of the occupation-fractions 
of the layers of interstices. 

The repeat units of the trigonal columns in Fig. 2 
are not crystallographic unit cells by themselves, 
but they do represent a construct that  forms a true 
unit cell with respect to translation along the al, a2, 
c axes for TPO containing a single permutation 
pseudovector. This construct (a) has its surface made 
up of portions of the surfaces of closest packed atoms, 
octahedral interstices, and tetrahedrM interstices, and 
(b) its intersection with the midplane of the reference 
monolayer at  c = 0  is shown by the heaviest line in 
Fig. 1 which outlines a single complete set of A, B, C 
positions (equal to one full circle and two full, plane 
triangular interstices). 

11. Surface T P O  

Surface, TPO, S, are defined for the purpose of repre- 
senting the abrupt  termination of crystal periodicity 
tha t  occurs at  a crystal surface. These TPO which 
can be used to 'cap' ordinary TPO formulae represent 
infinite, two-dimensional planes of hemispherical half- 
atoms plus sites analogous to the ordinary (+)- te t . ,  
oct., and ( - ) - t e t .  interstices. An example of their use 
arises in connection with the crystal polarity of 
ZnS-like structures which have chemically and 
physically distinguishable closest-packed surfaces at  
each end of the crystal,e.g. (111) versus (111) in c.c.p. 
and (0001) versus (0001) in h.c.p. (Gatos & Lavine, 
1960; Warekois, Lavine, Mariano & Gatos, 1962). 
Thus the TPO formulae for sphalerite in Table 4 
can be rewritten as follows: 

(O00)SL(IOO)L(IOO)L(IO0) . . . 

L(IOO)L(IOO)L(IO0)S(IO0), (17) 

(O01)SL(OO1)L(OO1)L(O01). . . 

L(OO1)L(OO1)L(O01)S(O00). (18) 

In (17), (000)S is a surface TPO at the bottom of a 
crystal which has all its surface interstitial sites 
empty, and S(100) is a surface TPO at the top of 
the crystal with the surface (+)- te t .  sites occupied. 
Thus (000)S represents the anionic or (111) face of 
the crystal, whereas S(100) represents the cationic 
or (111) face. In (18), the situation is just reversed 
with (001)S representing the bottom, cationic face 
and S(000) the top, anionic face. 
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12. Classical stacking faults; 
multiple TPO and point defects 

Stacking faults of the classical type, i.e. in the closest- 
packed atom lattice, are described in the TPO algebra 
by simply scrambling the pari ty of the unit TPO. 
For example, in an L L L . . .  sequence representing 
c.c.p, the inclusion of stacking faults would be 
indicated by entering a number of R-unit TPO either 
at  random or in a statistically weighted fashion. 

Heretofore only a single unit cell TPO, I0m, was 
used to represent a crystal structure since, in the 
ideal case, a finite volume element of the crystal 
would be represented by simply multiplying the unit 
cell formula by an integer, M, or, in the case of a 
mole of the solid, by Avogadro's number, ~4 r .  With 
reference to Fig. 2, M=qr ,  i.e., q trigonal columns 
each of which contains r crystallographic repeat units. 
However, to represent point defects more than one 
type of TPO or multiple TPO must be used. For 
example, to represent a defect NaC1 structure in 
which some of the sodium cations have jumped into 
tetrahedral interstices, the following set of different 
types of unit TPO, R, might be used: 

( 3 M -  w - x - 2y - 2z)R(010) + wR(lO0) + xR(001) 

+ y R ( l l O ) + z R ( O l l ) ÷ ( y + z ) R ( O 0 0 ) ,  (19) 

where w, x, y, z are small compared to M, and where 
unit TPO are used since the crystallographic repeat 
unit, RRR,  contains R-unit TPO exclusively..4 given 
distribution of both the values of w, x, y, z and the 
spatial locations of the individual defect unit TPO 
would constitute a 'snapshot' of a given overall defect 
concentration at  a given instant of time. The general 
scheme whereby successive snapshots might be 
generated in a computer s tudy would involve the 
use of fractional occupational probability indices to 
indicate the relative probabilities of site occupation, 
e.g. R(p, q, r) where p + q-t-r = 1. Then, each individual 
'snapshot'  would be generated by the use of either 
a table of random numbers or by a statistically 
weighted scheme to mimic, say, a concentration 
gradient, with appropriate normalization in either 
case. 

To indicate the presence of point defects involving 
the closest packed atoms as well as the interstitial 
atoms, the formulae in Table 4 would have to be 
modified to include additional occupational probability 
indices for the closest packed atoms. For convenience 
it would be best to have five such indices with the 
second, third, and fourth corresponding to the three 
indices in Table 4, and the first and fifth to the 
closest packed atoms (treated as hemispheres) at  the 
top and bottom of the unit TPO. Then, as an example, 
an individual unit cell TPO for ideal h.c.p., I02, 
would be written as L(10001)R(10001), and an initial 
stage in the formation of a single Frenkel defect, 

in which a closest-packed atom has jumped into a 
neighboring octahedral site, might be indicated by 
a single defect TPO such as L(10100)R(00001). I t  is 
important  to note tha t  the probability indices in 
neighboring unit TPO representing closest-packed 
atoms must be properly correlated, as in the last 
formula, to indicate properly the absences in the 
closest-packed atom structure and to avoid occurrences 
of closest-packed hemispheres. 

13. Conclusions 

An abstract algebra of translation permutat ion 
operators, TPO, has been developed to describe 
defective and deformed crystal structures. At the 
present stage the algebra is restricted to the hypo- 
thetical case of ideal closest packing which imposes 
three restrictions upon the TPO: (1) the magnitude 
of the unit  TPO vector is 1.6330rcp; (2) the TPO 
vector is perpendicular to the closest-packed planes; 
and (3) the monolayer positions, A (or B or C), form 
a p6mm net, the distance between nearest neighbor 
positions being 2rep. More-complicated crystal struc- 
tures can be described by modification of any one 
or all of these three restrictions. Even at  the present 
idealized stage, however, the TPO Crystal Algebra 
is capable of effectively describing two types of 
crystal defects: (1) classical stacking faults; and 
(2) point defects. 
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The compotmds Nb3Se 4 and Nb3T % are isostructural. The hexagonal unit cells have the dimensions: 

Nb3Sed: a=10.012, c=3 .4707A;  
NbaTed: a=10.671, c=3-6468 ~ .  

The space group is P6Jm (C~h) and the unit cell contains 6Nb and 8Te(Se) in the positions: 

6ND in (h) _ (x, y, ¼; ~, x - y ,  ¼; y - x ,  ~, ¼) 
with x~ =0.4886, Yl =0.1039. 

2Te in (c) + (~, 1 _ ~-, ~). 
6Te in (h) with x 2 =0"3389, y2 =0"2731. 

The relationships to the TisTe 4 type structure of the ikrbsSe4 and NbsT % phases and the NbS~ (H)- 
like structure of the Nbx+xS% phase are discussed. 

Introduction 

In  recent communicat ions by  Selte & Kjekshus  
(1963, 1964) the crystal lographic properties of the 
NbsTea, NbsSe4 and  Nbl+~Se~ phases have been 
described. The present paper  is concerned with the 
crystal  structures of two previously unknown niobium 
selenide and  telluride* phases. The compositions were 
found to be NbaSe4 and Nb3Te4 by  X-ray  and densi ty  
measurements .  

A var ie ty  of samples were prepared by  heat ing 
accurately weighed quant i t ies  of the components 
(in different  proportions) in  evacuated and sealed 
silica tubes. The samples were heated at various 
temperatures  between 500 and 1350 °C and quenching 
in  ice water  as well as slow cooling was used. Single 
crystals,  grown from the vapour  phase, were found 

* The niobium tellurides have also been studied by 
Grigorjan, Simanov & Novoselova (1960) and by :Novoselova, 
Grigorjan & Simanov (1960). They-reported inter alia the 
existence of a phase with composition in the range NbTel.00 
to NbT%.~0. The available data indicate that their NbTe 1.00_l.v0 
phase is identical with the present NbaTe 4 phase. 

in the tel luride samples. Certain difficulties in the 
preparat ion of the samples resulted from reaction 
between the niobium and the silica (Selte & Kjekshus,  
1963, 1964). 

The atomic ar rangement  in these structures is of 
considerable interest,  especially its resemblance to 
the neighbouring phases in the n iob ium-se len ium and 
n iob ium- te l lu r ium systems, i.e. the NbsSed, Nbl+xSe2, 
NbsTe4 and NbTe2 phases. 

Unit  cell  and space g r o u p  

Guinier photographs (taken with s tr ic t ly  mono- 
chromatized Cu K~I radiat ion,  2~1= 1.54050 _~, wi th  
potassium chloride, a=6 .2919  /~ (Hambling,  1953) 
added as in ternal  s tandard) could be indexed on 
hexagonal  axes with the following uni t  cell dimensions 
(cf. Table 1): 

1NbsSed; a=lO.012,  c=3.4707 J~, c/a=0.3467. 
Nb3Ted; a =  10.671, c=3.6468/~ ,  c/a=0.3418. 

The latt ice dimensions were approximate ly  constant  


